Search results for "Voltage-gated potassium channel"

showing 5 items of 5 documents

Differential localization of voltage-gated potassium channels duringDrosophilametamorphosis

2020

Neuronal excitability is determined by the combination of different ion channels and their sub-neuronal localization. This study utilizes protein trap fly strains with endogenously tagged channels ...

0301 basic medicineQuantitative Biology::Neurons and CognitionbiologyChemistrymedia_common.quotation_subjectfungiVoltage-gated potassium channelbiology.organism_classificationTrap (computing)03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biology0302 clinical medicinenervous systemGeneticsBiophysicsShakerDrosophila (subgenus)Metamorphosis030217 neurology & neurosurgeryIon channelDifferential (mathematics)Computer Science::Information Theorymedia_commonJournal of Neurogenetics
researchProduct

Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor …

2006

Potassium channels contribute to basic neuronal excitability and modulation. Here, we examined expression patterns of the voltage-gated potassium channel Kv1.4, the nociceptive transduction channels TRPV1 and TRPV2 as well as the putative anti-nociceptive cannabinoid receptor CB1 by immunofluorescence double-labelings in sections of rat dorsal root ganglia (DRGs). Kv1.4, TRPV1 and CB1 were each detected in about one third of neurons (35.7+/-0.5%, 29.4+/-1.1% and 36.4+/-0.5%, respectively, mean diameter 19.1+/-0.3 microm). TRPV2 was present in 4.4+/-0.4% of all neurons that were significantly larger in diameter (27.4+/-0.7 microm; P < 0.001). Antibody double-labeling revealed that the majori…

Cannabinoid receptorTRPV2Blotting WesternTRPV1TRPV Cation ChannelsCell CountRats Sprague-DawleyTransient receptor potential channelDorsal root ganglionReceptor Cannabinoid CB1Ganglia SpinalmedicineAnimalsCells CulturedIn Situ HybridizationNeuronsChemistrymusculoskeletal neural and ocular physiologyGeneral NeuroscienceVoltage-gated potassium channelMolecular biologyImmunohistochemistryPotassium channelSensory neuronRatsmedicine.anatomical_structureShal Potassium Channelsnervous systemlipids (amino acids peptides and proteins)Neurosciencepsychological phenomena and processesNeuroscience
researchProduct

A novel mutation in KCNQ3-related benign familial neonatal epilepsy: electroclinical features and neurodevelopmental outcome.

2019

Benign familial neonatal epilepsy (BFNE) is caused, in about 5% of families, by mutations in the KCNQ3 gene encoding voltage-gated potassium channel subunits. Usually, newborns with BFNE show a normal neurological outcome, but recently, refractory seizures and/or developmental disability have been reported suggesting phenotype variability associated with KCNQ3-related BFNE. Here, we describe a proband from a BFNE family carrying a novel variant in the KCNQ3 gene. Regarding the paucity of data in the literature, we describe the presented case with a view to further establishing: (1) a genotype/phenotype correlation in order to define a BFNE phenotype associated with favourable outcome; (2) a…

MaleGenotypeelectroclinical featureInfantElectroencephalographygenotype-phenotype correlationSettore MED/39 - Neuropsichiatria InfantileEpilepsy Benign NeonatalKCNQ3 Potassium ChannelKCNQSettore MED/38 - Pediatria Generale E SpecialisticaPhenotypevoltage-gated potassium channelsSettore M-PSI/08 - Psicologia ClinicaHumansbenign familial neonatal epilepsyEpileptic SyndromesEpileptic disorders : international epilepsy journal with videotape
researchProduct

A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability

2015

Mutations in the KCNQ2 gene encoding for voltage-gated potassium channel subunits have been found in patients affected with early onset epilepsies with wide phenotypic heterogeneity, ranging from benign familial neonatal seizures (BFNS) to epileptic encephalopathy with cognitive impairment, drug resistance, and characteristic electroencephalography (EEG) and neuroradiologic features. By contrast, only few KCNQ3 mutations have been rarely described, mostly in patients with typical BFNS. We report clinical, genetic, and functional data from a family in which early onset epilepsy and neurocognitive deficits segregated with a novel mutation in KCNQ3 (c.989G>T; p.R330L). Electrophysiological stu…

MaleGenotype-phenotype correlationmedicine.medical_specialtyNeurologyBenign familial neonatal seizuresMutantGenotype-phenotype correlationsmedicine.disease_causeMutagenesiKCNQ3 Potassium ChannelEpilepsyKCNQBenign Familial Neonatal Seizures KCNQ cognitive impairment voltage-gated potassium channels epilepsy mutagenesis genotype-phenotype correlationsSeizuresSettore M-PSI/08 - Psicologia ClinicaIntellectual DisabilityIntellectual disabilitymedicineHumansKCNQ2 Potassium ChannelVoltage-gated potassium channelBenign familial neonatal seizuresGenetic Predisposition to DiseaseGenetic TestingChildGenetic testingGeneticsMutationEpilepsymedicine.diagnostic_testGenetic heterogeneitybusiness.industryMedicine (all)Benign familial neonatal seizures; Cognitive impairment; Epilepsy; Genotype-phenotype correlations; KCNQ; Mutagenesis; Voltage-gated potassium channels; Child; Female; Genetic Testing; Humans; Intellectual Disability; KCNQ2 Potassium Channel; KCNQ3 Potassium Channel; Male; Mutation; Pedigree; Seizures; Genetic Predisposition to Disease; Neurology (clinical); Neurology; Medicine (all)Benign familial neonatal seizuremedicine.diseaseSeizureSettore MED/39 - Neuropsichiatria InfantilePedigreeCognitive impairmentNeurologyMutagenesisMutationFemaleNeurology (clinical)businessVoltage-gated potassium channelsHuman
researchProduct

Membrane potential bistability in nonexcitable cells as described by inward and outward voltage-gated ion channels.

2014

The membrane potential of nonexcitable cells, defined as the electrical potential difference between the cell cytoplasm and the extracellular environment when the current is zero, is controlled by the individual electrical conductance of different ion channels. In particular, inward- and outward-rectifying voltage-gated channels are crucial for cell hyperpolarization/depolarization processes, being amenable to direct physical study. High (in absolute value) negative membrane potentials are characteristic of terminally differentiated cells, while low membrane potentials are found in relatively depolarized, more plastic cells (e.g., stem, embryonic, and cancer cells). We study theoretically t…

Membrane potentialVoltage-gated ion channelChemistryVoltage clampCellsAnalytical chemistrymembrane potentialsDepolarizationVoltage-gated potassium channelHyperpolarization (biology)Resting potentialModels BiologicalIon ChannelsSurfaces Coatings and FilmsMembrane PotentialsKineticsMaterials ChemistryBiophysicsvoltage gated ion channelsPhysical and Theoretical Chemistrynon-excitable cellsIon channelThe journal of physical chemistry. B
researchProduct